XLIX OM - I - Zadanie 2

Proste zawierające wysokości trójkąta $ ABC $, wpisanego w okrąg o środku $ O $, przecinają się w punkcie $ H $, przy czym $ |AO| =|AH| $. Obliczyć miarę kąta $ CAB $.

Rozwiązanie

Oznaczmy przez $ M $ środek boku $ BC $. Rozwiązanie zadania będzie oparte na równości

\[<br />
\qquad (1) |AH| = 2 \cdot |OM|,<br />
\]

która zachodzi w każdym trójkącie, niezależnie od założenia, że $ |AO| =|AH| $. Oto jej dowód:

Role punktów $ B $ i $ C $ są symetryczne; można przyjąć, że $ |AB|\geq|AC| $ i wobec tego kąt ABC jest ostry. Każdy z dwóch pozostałych kątów trójkąta $ ABC $ może być ostry, prosty lub rozwarty. Gdy kąt $ CAB $ jest prosty, wówczas punkt $ H $ pokrywa się z $ A $, punkt $ O $ pokrywa się z $ M $, i po obu stronach dowodzonej równości mamy zera. Dalej zakładamy, że kąt $ CAB $ jest ostry lub rozwarty (rysunek 1 przedstawia różne możliwe sytuacje; prowadzone rozumowanie nie zależy od przypadku).

Prowadzimy średnicę $ CX $ okręgu $ \omega $ opisanego na trójkącie $ ABC $; oparte na niej kąty wpisane $ CAX $ i $ CBX $ są proste. Wysokości trójkąta $ ABC $, poprowadzone z wierzchołków $ A $ i $ B $, są zawarte w prostych $ AH $ i $ BH $. Spełnione są więc warunki prostopadłości: $ AX \bot AC $, $ AC \bot BH $, $ BX \bot BC $, $ BC\bot AH $. Wynika z nich, że $ AX \parallel BH $ oraz $ BX \parallel AH $. Czworokąt $ AHBX $ jest zatem równoległobokiem i zachodzi równość $ |AH| = |BX| $. Odcinek $ OM $ łączy środki boków $ CX $ i $ CB $ trójkąta $ CBX $. Stąd $ |BX| = 2\cdot |OM| $, co w połączeniu z równością poprzednią daje dowodzoną zależność (1).

Jeżeli teraz, zgodnie z treścią zadania, długość odcinka $ AH $ jest równa promieniowi okręgu $ \omega $, to długość odcinka $ OM $ jest równa połowie tego promienia: $ |OM| = \frac{1}{2}\cdot|OC| $. Stąd $ |\measuredangle MOC| = 60^\circ $, czyli $ |\measuredangle BOC| = 120^\circ $.

Wniosek: kąt $ CAB $, jako kąt wpisany w okrąg $ \omega $, oparty albo na krótszym albo na dłuższym łuku $ BC $, ma miarę $ 60^\circ $ lub $ 120^\circ $.

Każda z tych wartości istotnie może być przyjęta; przykłady: trójkąt równoboczny $ ABC $ oraz trójkąt równoramienny $ ABC $ z kątem $ 120^\circ $ przy wierzchołku $ A $.

Uwaga: Jak zauważyliśmy, równość (1) jest prawdziwa dla każdego trójkąta $ ABC $; w podanym rozwiązaniu stanowi ona lemat, a dokończenie rozwiązania na podstawie tego lematu jest krótkie i zupełnie proste.

Wspomnijmy jeszcze o innych metodach rozwiązania. Każda z nich opiera się na jakimś fakcie ogólnym, słusznym dla każdego trójkąta i stanowiącym lemat, z którego da się wydedukować odpowiedź na pytanie postawione w zadaniu.

Oto owe lematy:

  • \[<br />
\qquad (2) |AH|\cdot \sin \measuredangle BCA=|AB|\cdot |\cos \measuredangle CAB|;<br />
\]
  • \[<br />
\qquad (3) \overrightarrow{OH} = \overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC};<br />
\]
  • $ \qquad (4) $ proste $ AO $ i $ AH $ są symetryczne względem dwusiecznej kąta $ CAB $;
  • $ \qquad (5) $ obraz punktu $ H $ w symetrii względem prostej $ BC $ leży na okręgu $ \omega $.

Czytelnikom, którzy nie znają którejkolwiek z tych własności, proponujemy znalezienie dowodu (dowodów) jako pożyteczne ćwiczenie. Dokończenie rozwiązania zadania na podstawie dowolnej z własności (2), (3), (4) lub (5)\nic{rf} jest nie tak natychmiastowe, jak przy wykorzystaniu własności (1) — wciąż jednak niezbyt trudne i też może być przyjemnym ćwiczeniem.

Komentarze

Dodaj nową odpowiedź