XLVI OM - I - Zadanie 1

Wyznaczyć wszystkie pary $ (x,y) $ liczb naturalnych, dla których liczby $ \frac{x+1}{y} $ oraz $ \frac{y+1}{x} $ są naturalne.

Rozwiązanie

Niech $ (x,y) $ będzie jedną z szukanych par. Liczby naturalne $ y \geq 1 $ oraz $ x \geq 1 $ są odpowiednio dzielnikami liczb $ x + 1 $ oraz $ y + 1 $. Zatem iloczyn $ xy $ jest dzielnikiem iloczynu $ (x + 1)(y+ 1) $, równego sumie $ xy + x + y + 1 $. Jest więc też dzielnikiem sumy $ x + y + 1 $, a zatem zachodzi nierówność $ xy \leq x + y + 1 $, czyli $ (x-1)(y -1) \leq 2 $. Wartość iloczynu $ (x-1)(y-1) $ może być w takim razie równa tylko $ 2 $, $ 1 $ lub $ 0 $.

W pierwszym przypadku jeden z czynników $ (x - 1) $ i $ (y- 1) $ jest równy $ 2 $, a drugi $ 1 $, czyli para $ (x,y) $ jest jedną z par $ (3,2) $ i $ (2,3) $.

W drugim przypadku mamy $ x -1 = y -1 = 1 $, czyli $ x = y = 2 $. Jednak para $ (x,y) = (2,2) $ nie spełnia warunku zadania (iloraz $ 3/2 $ nie jest liczbą naturalną).

W trzecim przypadku co najmniej jeden z czynników $ (x - 1) $ i $ (y- 1) $ jest zerem. Jeśli na przykład $ y - 1 = 0 $, czyli $ y = 1 $, to liczba $ x $, jako dzielnik sumy $ y + 1 = 2 $, musi być równa $ 1 $ lub $ 2 $; tak więc $ x = y = 1 $ lub $ y = 1 $, $ x = 2 $ lub - przez symetrię - $ x = 1 $, $ y = 2 $.

Rekapitulując, widzimy, że tylko następujące pary $ (x,y) $ mogą spełniać postawione warunki: $ (3,2) $, $ (2,3) $, $ (1,1) $, $ (2,1) $, $ (1,2) $ - i istotnie je spełniają; sprawdzenie jest natychmiastowe.

Komentarze

Dodaj nową odpowiedź